If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9n^2+50n-24=0
a = 9; b = 50; c = -24;
Δ = b2-4ac
Δ = 502-4·9·(-24)
Δ = 3364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3364}=58$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-58}{2*9}=\frac{-108}{18} =-6 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+58}{2*9}=\frac{8}{18} =4/9 $
| 81/9(7+2)=x | | -7(7x-6)=385 | | -5.f=36 | | 15x-6+6x=9x+2 | | (2/11)-4x=4x=(9/11) | | 25=7m+4= | | 6x+30=31 | | 2(x-2)=-x-10 | | 15m+4-49m=-32 | | -6+x/3=7 | | 1/2(x-8)=2x+5 | | -243=-9x-18 | | -6-(-2x)=x-1 | | 4x-12=2x+16=x | | 4=15-3p+7 | | 2(m+2)=2(2m+2 | | -52-7x=116-14x | | 310x=180x+33070 | | 6x=15-(-15) | | (10+d)+5=25 | | x+0.09x=515 | | 9|4p+2|+8=35. | | 4(a-2)+12=2(a+6) | | 3y/4=3/7 | | X^2-32x+80=0 | | 0=4x^2+6 | | 7(x=4)=5(x-2) | | 5/2y+1=3/y-2 | | 11+x/3=26 | | x^2+40x+320=0 | | 1-3x=2x+ | | -7(x+1)-15=38+3 |